

STEP III, 2007, Q9

Two small beads, A and B, each of mass m, are threaded on a smooth horizontal circular hoop of radius a and centre O. The angle θ is the acute angle determined by $2\theta = \angle AOB$.

The beads are connected by a light straight spring. The energy stored in the spring is

$$mk^2a^2(\theta-\alpha)^2$$
,

where k and α are constants satisfying k > 0 and $\frac{\pi}{4} < \alpha < \frac{\pi}{2}$.

The spring is held in compression with $\theta = \beta$ and then released. Find the period of oscillations in the two cases that arise according to the value of β and state the value of β for which oscillations do not occur.

NextStepMaths.com

To view mark schemes, fully worked solutions and examiner's comments, and for more details about tutoring and other services offered, go to

NextStepMaths.com